1 It is given that $\triangle A B C \sim \triangle P Q R$ with $\frac{B C}{Q R}=\frac{1}{3}$, then $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}$ is
(a) 9
(b) 3
(c) $\frac{1}{3}$
(d) $\frac{1}{9}$

2 If $\triangle A B C \sim \triangle P Q R$, area of $\triangle \mathrm{ABC}=81 \mathrm{~cm}^{2}$, area of $\triangle \mathrm{PQR}=144 \mathrm{~cm}^{2}$ and $\mathrm{QR}=6 \mathrm{~cm}$, then length of BC is
(a) 4 cm (b) 4.5 cm
(c) 9 cm
(d) 12 cm
3. A girl walks 200 towards East and the she walks 150 m towards North. The distance of the girl from the starting point is
(a) 350 m (b) 250 m
(c) 300 m
(d) 225 m

4 ABC and BDE are two equilateral triangles such that $B D=\frac{2}{3} B C$. The ratio of the areas of triangles ABC and BDE are
(a) $2: 3$
(b) $3: 2$
(c) $4: 9$
(d) $9: 4$
5. If $D E \| B C$,find the value of ' x '

6. In a trapezium $A B C D, A B \| D C$.Its diagonals $A C$ and $B D$ intersect at O.

Show that $\frac{O A}{O C}=\frac{O B}{O D}$
7. If a line is drawn parallel to one side of a triangle to intersect the other sides in distinct points, then prove that the line drawn, divides the two sides in the same ratio
8. P and Q are points on sides $A B$ and $A C$ respectively of $\triangle A B C$. If $A P=3 \mathrm{~cm}, P B=6 \mathrm{~cm}$, $A Q=5 \mathrm{~cm}$ and $Q C=10 \mathrm{~cm}$, show that $B C=3 P Q$.
9. In $\triangle A B C, A D \perp B C$ such that $A B^{2}=B D$.CD. Prove that $A B C$ is right angled triangle, right angle at A .
10. Two right triangles $A B C$ and $D B C$ are drawn on the same hypotenuse $B C$ and on the same side of $B C$. If $A C$ and $B D$ intersect at P, prove that
$\mathrm{AP} \times \mathrm{PC}=\mathrm{BP} \times \mathrm{PD}$

