

ACADEMIC YEAR 2022-23

Grade: X

Subject: MATHEMATICS

(d) none of these

CH - 2 POLYNOMIAL - ASSIGNMENT -1

(d) - 2

2. If one of the zero of the polynomial $f(x) = (k^2 + 4)x^2 + 13x + 4k$ is reciprocal of the other

4. If the sum of the zeroes of the polynomial $f(x) = 2x^3 - 3kx^2 + 4x - 5$ is 6, then value of k is

1. If α, β are the zeroes of the polynomials $f(x) = x^2 + x + 1$, then $\frac{1}{\alpha} + \frac{1}{\beta}$

(c) -1

(c) -1

(b) $\frac{-7}{3}$ (c) $\frac{3}{7}$ (d) $\frac{-3}{7}$

3. If α, β are the zeroes of the polynomials $f(x) = 4x^2 + 3x + 7$, then $\frac{1}{\alpha} + \frac{1}{\beta}$

(a) 0

(a) 2

(a) $\frac{7}{3}$

then k =

(b) 1

(b) 1

	(a) 2	(b) 4	(c) -2	(d) - 4
5.	The zeroes of a polynomial $p(x)$ are precisely the x-coordinates of the points, where the graph of $y = p(x)$ intersects the			
			(c) origin	(d) none of the above
6	Find the zeroes of the quadratic polynomial $6x^2-7x-3$ and verify the relationship between the zeroes and the coefficients.			
7	If α , β are zeroes of quadratic polynomial $x^2-(k+6)x+2(2k-1)$, find k , if $\alpha+\beta=\frac{1}{2}\alpha\beta$			
8	If 1 is zero of the polynomial $p(x) = ax^2 - 3(a-1)x - 1$, then the value of 'a' is			
9	Form a quadratic polynomial whose one of the zeroes is 12 and sum of the zeroes is -9 .			
10.	10. Find the zeros of the quadratic polynomial $3x^2 - 8$			
11.	1. Find the quadratic polynomial with $0-81$ and 3 as product and one of the zeros respectively			
12. Find the zeros of $\sqrt{3}x^2 - 8x + 4\sqrt{3}$				
